Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Trace Elem Med Biol ; 79: 127207, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37224744

RESUMEN

BACKGROUND: Nanoparticles (NPs) are currently found in the world in the form of natural colloids and volcanic ash, as well as in anthropogenic sources, such as nanofertilizers; however, in the literature, there is still a lack of toxicological evidence, risk assessment, and regulations about the use and environmental impact of NPs in the agroindustrial system. Therefore, the aim of this work was to evaluate alterations caused by the presence of AgNPs during the development of soybean plants. METHODS: The BRS232 non-transgenic (NT) soybean plant and 8473RR (TRR) and INTACTA RR2 PRO (TIntacta) transgenic soybean plants were irrigated for 18 days under controlled conditions with deionized water (control), AgNPs, and AgNO3. The isotopes 107Ag+, 55Mn+, 57Fe+, 63Cu+, and 64Zn+ were mapped in leaves, using 13C+ as an internal standard (IS), and carried out using a laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) technique with a Nd:YAG (213 nm) laser source in the imagagin mode using the LA-iMageS software and also Mathlab. RESULTS: Leaf images showed a low Ag translocation, indicated by the basal signal of this ion. Additionally, the presence of Ag in the ionic form and as NPs altered the homeostasis of 112Cd+, 64Zn+, 55Mn+, 63Cu+, and 57Fe+ in different ways. Quantitative image analysis was performed for Cu. CONCLUSION: The behavior of TRR and TIntacta plants was different in the presence of ionic silver or AgNPs, confirming that the metabolism of these two plants, despite both being transgenic, are different. Through the images, it was observed that the response of plants was different in the face of the same stress conditions during their development.


Asunto(s)
Terapia por Láser , Nanopartículas del Metal , Plata/metabolismo , Glycine max/química , Nanopartículas del Metal/química , Terapia por Láser/métodos , Homeostasis , Plantas
2.
Artículo en Inglés | MEDLINE | ID: mdl-34157936

RESUMEN

Selenium (Se) is an essential micronutrient for humans. Garlic (Allium sativum L.) metabolises Se into important Se-amino acids like Se-methylselenocysteine (Se-MetSeCys), precursor of methylselenol, an active species for cancer prevention. Therefore, the Se accumulation and speciation in garlic were studied to evaluate their relations with growth stages and types of plant clones. Four garlic clones (Nieve INTA, Union FCA, Gostoso INTA and Rubí INTA) were fortified with a Se solution (169 g Se L-1). The association of Se to different molecular weight fractions was evaluated by size-exclusion chromatography coupled to inductively coupled plasma mass spectrometry (SEC-ICP-MS) detection. Also, anion exchange chromatography (AEC-ICP-MS) was used for the determination of Se-amino acids, while their identification was performed by ESI-MS/MS. The Se was incorporated into high (7-5 kDa) and low (2-4 kDa) molecular weight fractions. The presence of Se-MetSeCys was observed mostly. Se-MetSeCys increased in bulbs to a maximum value but increased, then decreased, in leaves and roots. The Se-organic species were mostly found in bulbs in the last growth stage. Garlic showed a significant ability to accumulate and metabolise Se, specially, the red clones (Gostoso INTA and Rubí INTA). Also, this work suggests that this plant may become an attractive source of Se-amino acids with important biological properties.


Asunto(s)
Análisis de los Alimentos , Contaminación de Alimentos/análisis , Ajo/química , Selenio/análisis , Ajo/crecimiento & desarrollo , Ajo/metabolismo , Humanos , Espectrometría de Masas , Selenio/metabolismo
3.
Talanta ; 224: 121808, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33379034

RESUMEN

We report a complete set of strategies for characterization and an accurate determination of gold in metallic nanoparticles. For this, gold nanorods (AuNR) were synthesized by using the surfactant hexadecyltrimethylammonium bromide (CTAB) as the stabilizer and shape-directing agent. The surfactant CTAB forms a bilayer structure around the nanoparticles and became a challenge for the development of the microwave-assisted decomposition of the AuNR colloid. The bilayer structure of CTAB prevents the Au3+ release for the acidic media during the decomposition procedure. To overcome this limitation, a combination of low sample volume consumption (only 200 µL), an acidic mixture of reverse aqua regia (1:3 v/v, HCl:HNO3), and sulfuric acid, and a microwave program was used. The gold quantification by ICP-MS and checked through the ICP OES, demonstrated that the seed-mediated growth method used for the AuNR synthesis has a high yield, presenting ca. 100% of gold content (ca. 100 mg L-1 of gold concentration) in the post-synthesis colloid (AuNR-total) as well as in the colloid after a washing step (AuNR-res). The microwave-assisted decomposition procedure also demonstrated to be efficient in the acidic decomposition of the gold-silver core-shell nanoparticle (Au@AgNR), which presents a high content of polyvinylpyrrolidone (PVP) (Mw ~55000 g mol-1) acting as a stabilizer, in addition to the matrix with CTAB. The results demonstrated an accurate recovery of ca. 100% of gold content for the Au@AgNR regarding the gold nanorod before the growth of the silver shell (AuNR_Core). The proposed microwave-assisted decomposition platform demonstrated to be an efficient, reliable, and robust characterization tool for the gold quantification in metallic nanoparticles, presenting no interference of the complex matrix with high organic content.

4.
Rapid Commun Mass Spectrom ; 34 Suppl 3: e8726, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32020701

RESUMEN

The widespread application of nanoparticles (NPs) in recent times has caused concern because of their effects in biological systems. Although NPs can be produced naturally, industrially synthesized NPs affect the metabolism of a given organism because of their high reactivity. The biotransformation of NPs involves different processes, including aggregation/agglomeration, and reactions with biomolecules that will be reflected in their toxicity. Several analytical techniques, including inductively coupled plasma mass spectrometry (ICP-MS), have been used for characterizing and quantifying NPs in biological samples. In fact, in addition to providing information regarding the morphology and concentration of NPs, ICP-MS-based platforms, such as liquid chromatography/ICP-MS, single-particle ICP-MS, field-flow fractionation (asymmetrical flow field-flow fractionation)-ICP-MS, and laser ablation-ICP-MS, yield elemental information about molecules. Furthermore, such information together with speciation analysis enlarges our understanding of the interaction between NPs and biological organisms. This study reports the contribution of ICP-MS-based platforms as a tool for evaluating NPs in distinct biological samples by providing an additional understanding of the behavior of NPs and their toxicity in these organisms.


Asunto(s)
Espectrometría de Masas/métodos , Nanopartículas del Metal/análisis , Animales , Cromatografía Liquida , Fraccionamiento de Campo-Flujo , Humanos , Nanopartículas del Metal/química , Nanopartículas del Metal/toxicidad , Plantas/química , Plantas/efectos de los fármacos , Análisis de la Célula Individual
5.
Environ Pollut ; 263(Pt A): 114583, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33618488

RESUMEN

Although air pollution decreased in some cities that shifted from an industrial to a service-based economy, and vehicular emission regulation became more restrictive, it is still a major risk factor for mortality worldwide. In central São Paulo, Brazil, air quality monitoring stations and tree-ring analyses revealed a decreasing trend in the concentrations of particulate matter and metals. Such trends, however, may not be observed in industrial districts located in the urban periphery, where the usual mobile sources may be combined with local stationary sources. To evaluate environmental pollution in an industrial district in southeastern São Paulo, we assessed its spatial variability, by measuring magnetic properties and concentrations of Al, Ba, Ca, Cl, Cu, Fe, K, Mg, Mn, P, S, Sr, Zn in the bark of 62 trees, and its temporal trends, by measuring Cd, Cu, Ni, Pb, V, Zn in tree rings of three trees. Source apportionment analysis based on tree barks revealed two clusters with high concentrations of metals, one related to vehicular and industrial emissions (Al, Ba, Cu, Fe, Zn) in the east side of the industrial cluster, and the other related to soil resuspension (Cu, Zn, Mn) in its west side. These patterns are also supported by the magnetic properties of bark associated with iron oxides and titanium-iron alloy concentrations. Dendrochemical analyses revealed that only the concentrations of Pb consistently decreased over the last four decades. The concentrations of Cd, Cu, Ni, V, and Zn did not significantly decrease over time, in contrast with their negative trends previously reported in central São Paulo. This combined biomonitoring approach revealed spatial clusters of metal concentration in the vicinity of this industrial cluster and showed that the local population has not benefited from the decreasing polluting metal concentrations in the last decades.


Asunto(s)
Monitoreo del Ambiente , Metales Pesados , Brasil , Ciudades , Contaminación Ambiental , Metales/análisis , Metales Pesados/análisis
6.
J Trace Elem Med Biol ; 53: 27-33, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30910203

RESUMEN

Açaí pulp consumption has increased in Brazil and worldwide. Recently, a high average content of manganese (450 mg/kg) was observed in açaí pulp, raising the hypothesis of toxicological effects associated to its ingestion. However, the total concentration of an element does not reflect the real benefits and risks of consuming a food. In this context, the total, bioaccessible and bioavailable concentrations of Fe and Mn were assessed in 9 açaí pulps. Fe and Mn contents ranged from 27.6 to 73 and from 145 to 1197 mg kg-1, respectively. Fe and Mn bioaccessibilities represented from 29 to 40 and from 39 to 55% of total amounts. Fe bioavailabilities were lower than LOQ and those of Mn varied from 8 to 17% of total. A daily consumption of 100 g of açaí pulp exceeds by at least 1.5-fold the recommended Mn daily intakes for adults whereas poorly contributes to Fe intakes. Since the lowest Mn bioaccessible and bioavailable fraction corresponded to a Mn intake value higher than the tolerable upper intakes for children and that high amounts of Mn intake may impair Fe absorption, higher açaí consumption may be worrisome. Future nutritional, toxicological and speciation studies must be undertaken.


Asunto(s)
Digestión , Euterpe/química , Tracto Gastrointestinal/metabolismo , Hierro/análisis , Hierro/metabolismo , Manganeso/análisis , Manganeso/metabolismo , Humanos , Espectrometría de Masas
7.
Environ Pollut ; 242(Pt A): 320-328, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29990939

RESUMEN

The concern about environmental pollution has risen in the last decades because of its effects on human's health. However, evaluation of the exposure to certain pollutants is currently hampered by the availability of past environmental data. Tree rings are an alternative to reconstruct environmental variability of pre-instrumental periods. Nevertheless, this approach has some reported limitations including migration of chemical elements in the tree rings. The aim of this study was to evaluate the distribution of Cd, Cu, Hg, Na, Ni, Pb, Zn in the tree rings of Tipuana tipu (Fabaceae) to aid the reconstruction of past environmental pollution. We sampled trees in the central region of the city of São Paulo, Brazil, and scanned their tree rings using LA-ICP-MS. We used these data to evaluate the temporal trends of chemical elements under investigation. Results show a non-random distribution of these chemical elements within the tree rings, with higher content in the cell-walls of vessels and lower content in the fibers. Sodium was the only element intimately related to the axial parenchyma cells. Due to differences in elemental composition of xylem cells, temporal trends where evaluated using distinct quartiles of data distribution in each tree ring. The first quartile represents the lower content found in fibers and parenchyma, while the third quartile corresponds to the higher content found in vessels. Data from vessels better represent the decreasing trend of Cd, Cu, Pb, and Ni in the last three decades. This reduction is less significant for Na and Zn. Our results highlight the potential to improve the records of environmental pollution using data from different cells. Pronounced reduction in Pb may be attributed to the lead phase-out in gasoline, while the decreasing trend of Cd, Cu, Ni pollution is probably related to increasing efficiency of vehicles and the deindustrialization of São Paulo. Chemical elements are non-randomly distributed in tree rings. Chemical content of vessels cell-walls is a reliable record of metal pollution, which is decreasing in São Paulo.


Asunto(s)
Monitoreo del Ambiente/métodos , Contaminantes Ambientales/análisis , Contaminación Ambiental/estadística & datos numéricos , Metales Pesados/análisis , Árboles/química , Brasil , Contaminación Ambiental/análisis , Humanos , Plomo
8.
J Trace Elem Med Biol ; 44: 50-58, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28965600

RESUMEN

The mitigation of Cd-stress through Si addition to Arabidopsis thaliana cultivation is evaluated in terms of total metal content, proteomic and enzymatic approaches. Four different treatment are evaluated: TC (control, without Si or Cd addition), T1 (with Si addition), T2 (with Cd addition), and T3 (with Si and Cd addition). Through the total determination of Cd and Si in Arabidopsis leaves, the Cd concentration decreased by half when T2 is compared with T3 treatment. In terms of proteomic approach, some differential protein species are achieved by comparative proteomics through 2-D DIGE of all treatments evaluated. Fifty six differential abundant proteins spots (abundance factor ≥1.5) are detected, and 32 of them accurately characterized and identified through nESI-LC-MS/MS. These proteins are differentially produced due to Cd and/or Si treatments, which mainly include proteins associated with disease/defense, energy and metabolism. The most difference in the abundance of proteins is found due to the presence or absence of Si in plants treated with Cd. Regarding the enzymatic approaches, a major increase is found on APX, CAT and GR activities (5.0, 3.5, and 1.5-fold, respectively). The same is observed for the MDA concentration because an increase of 3-fold is found when TC are compared to those treated with T2. However, when T3 plants are evaluated, the enzymes activities are similar to TC plants. Differences ranging from 6.5 to 21% are detected considering the activity of SOD in the treatments (T1-T3 x TC). The decreased activities of CAT, APX and GR and lower MDA concentration indicate a lower reactive oxygen species production in plants treated with Cd and Si. Based on a proteomics point of view it is possible to conclude that Si-Cd interactions occur at protein level and allow plants to respond effectively to the Cd toxicity, revealing the active involvement of Si on mechanisms involved in Si-induced Cd tolerance in Arabidopsis plants. Additionally, from an enzymatic point of view, it is possible to conclude that Si positively interferes diminishing the negative effects of Cd in Arabidopsis by decreasing the reactive oxygen species generation and increasing the antioxidative enzyme activity.


Asunto(s)
Arabidopsis/enzimología , Arabidopsis/crecimiento & desarrollo , Cadmio/toxicidad , Metales/metabolismo , Proteómica , Silicio/farmacología , Estrés Fisiológico/efectos de los fármacos , Arabidopsis/efectos de los fármacos , Arabidopsis/fisiología , Cadmio/metabolismo , Electroforesis en Gel Bidimensional , Peroxidación de Lípido , Malondialdehído/metabolismo , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Unión Proteica , Mapas de Interacción de Proteínas , Silicio/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...